ON A CLASS OF CONVEX POLYTOPES

ΒY

JÜRGEN ECKHOFF

ABSTRACT

Let \mathcal{P} denote the class of convex polytopes P having the following property: If Q_1 and Q_2 are any subpolytopes of P with no vertex in common, then $Q_1 \cap Q_2$ is either empty or a single point. A characterization of \mathcal{P} is given which implies the characterization of strongly positively independent sets due to McKinney, Hansen and Klee.

1. Introduction

The purpose of this note is to prove a theorem on a class of convex polytopes which is analogous to the characterization of strongly positively independent sets given by McKinney [5] and Hansen and Klee [4].

Throughout P will denote a polytope, that is, a convex polytope in some d-dimensional affine space R^d . If P is d-dimensional, it will be called a d-polytope. For general information about polytopes we refer to Grünbaum [3]. The standard abbreviations conv, aff, relint, dim, card will be used for convex hull, affine hull, relative interior, dimension, cardinality. The vertex set of P will be denoted by vert P.

A polytope Q is called a *subpolytope* of P if vert $Q \subset \text{vert } P$. We write \mathcal{P} for the class of polytopes P with the following property: If Q_1 and Q_2 are subpolytopes of P such that vert $Q_1 \cap \text{vert } Q_2 = \emptyset$, then $Q_1 \cap Q_2$ is either empty or a single point. We shall give a simple geometrical description of the class \mathcal{P} . Clearly, if $P \in \mathcal{P}$ and Q is a subpolytope of P, then $Q \in \mathcal{P}$. Every simplex belongs to \mathcal{P} , and so does every d-polytope with d + 2 vertices, as can be deduced from the well-known structure of such polytopes. See [3, p. 98].

In order to formulate our result we introduce the concept of a *cross* of polytopes. By this we mean the following. Let P, Q_1, \dots, Q_k be polytopes such that $P = \operatorname{conv}(Q_1 \cup \dots \cup Q_k)$, dim $P = \dim Q_1 + \dots + \dim Q_k$, and

Received June 30, 1975

relint $Q_1 \cap \cdots \cap$ relint Q_k is a single point. Then P is called the cross of Q_1, \cdots, Q_k , and we write

$$P = Q_1 \perp \cdots \perp Q_k.$$

Our theorem is as follows.

THEOREM. Let P be a polytope in \mathbb{R}^d . Then $P \in \mathcal{P}$ if and only if, for some $r \ge 0$ and simplices S_1, \dots, S_k in \mathbb{R}^d , P is an r-fold pyramid with basis $S_1 \perp \dots \perp S_k$.

For the definition of an r-fold pyramid, see [3, p. 55].

Let $P \in \mathcal{P}$ be a polytope in \mathbb{R}^d as described in the theorem. We define the *center z* of P to be the point relint $S_1 \cap \cdots \cap$ relint S_k , if k > 1, and an arbitrary point of relint P, if k = 1. The theorem implies that if Q_1 and Q_2 are any subpolytopes of P satisfying vert $Q_1 \cap$ vert $Q_2 = \emptyset$, then $Q_1 \cap Q_2 \subset \{z\}$.

Another consequence of the theorem is that no *d*-polytope $P \in \mathcal{P}$ can have more than 2*d* vertices. If the number of vertices is exactly 2*d*, then *P* is a cross of *d* segments, that is, *P* is projectively equivalent to the regular *d*-crosspolytope. By a cross set in \mathbb{R}^d we understand the vertex set of a cross of *d* segments together with its center.

The following is an easy deduction from the theorem.

COROLLARY. Let X be a set in \mathbb{R}^d . If card X > 2d + 1, then X contains two disjoint subsets whose convex hulls have at least two points in common. The same is true when card X = 2d + 1 unless X is a cross set in \mathbb{R}^d .

2. Proof of the theorem

Before proceeding with the proof we recall that two sets $X_1, X_2 \subset \mathbb{R}^d$ are said to be *separated* by a hyperplane H if they lie one in each of the two closed half-spaces bounded by H. If X_1 and X_2 are convex and aff $(X_1 \cup X_2) = \mathbb{R}^d$, then X_1 and X_2 may be separated by a hyperplane if and only if relint $X_1 \cap$ relint $X_2 = \emptyset$. See [3, p. 11].

The "if" part of the theorem is easily verified. For the "only if" part we use induction on d and the number of vertices of P. Let $P \in \mathcal{P}$ denote a d-polytope in \mathbb{R}^d . We assume that P is not a simplex because otherwise there is nothing to prove. Moreover, since a pyramid belongs to \mathcal{P} if and only if its basis does, we may also assume that P is non-pyramidal. It is to be shown that P is a cross of at least two simplices.

Let us choose any vertex $v \in \text{vert } P$ and let Q denote the subpolytope of P spanned by vert $P \setminus \{v\}$. Then $Q \in \mathcal{P}$ and dim Q = d. The inductive hypothesis implies that Q is either a pyramid or a cross of at least two simplices.

The second case cannot arise. Indeed, assume that $Q = S_1 \perp \cdots \perp S_k$, where k > 1, and let z be the center of Q. Since $v \neq z$ we have, without loss of generality, $v \notin aff S_1$. Let $T_1 = \operatorname{conv} (S_1 \cup \{v\})$ and $T_2 = S_2 \perp \cdots \perp S_k$. Then vert $T_1 \cap \operatorname{vert} T_2 = \emptyset$. Since aff $Q = R^d$ and relint $S_1 \cap \operatorname{relint} T_2 \neq \emptyset$ it follows that S_1 and T_2 cannot be separated by a hyperplane. The same is true for T_1 and T_2 , whence relint $T_1 \cap \operatorname{relint} T_2 \neq \emptyset$. But T_1 is a pyramid with basis S_1 . Therefore $z \notin \operatorname{relint} T_1$. We deduce that T_1 and T_2 intersect in at least two points, contrary to the hypothesis $P \in \mathcal{P}$.

Hence Q is a pyramid. We first observe that if Q is a simplex, then P is a simplicial d-polytope with d+2 vertices, and therefore P is a cross of two simplices. See [3, p. 98].

It remains to consider the case in which Q is an r-fold pyramid with basis $S_1 \perp \cdots \perp S_k$ for some $r \ge 1$ and $k \ge 2$. Let z be the center of Q and let v_1, \cdots, v_r denote the apexes of the r pyramids which make up Q. Further, let $V = \{v, v_1, \cdots, v_r\}$ and $R = \operatorname{aff}(S_1 \perp \cdots \perp S_k)$.

We claim that every open half-space bounded by a hyperplane through R contains points of V. In fact, assume that this were not true. Since P is non-pyramidal, at most r-1 points of V can lie on a hyperplane through R. In particular, $V \cap R = \emptyset$. Now R has codimension r and so there exists, by Radon's theorem [3, p. 16] in R'^{-1} , a partition of V into non-empty subsets V_1 and V_2 which cannot be separated by any hyperplane through R. Let $T_1 = \operatorname{conv}(S_1 \cup V_1)$ and $T_2 = \operatorname{conv}((S_2 \perp \cdots \perp S_k) \cup V_2)$. Then T_1 and T_2 are subpolytopes of P with no vertex in common. Since relint $S_1 \cap$ relint $(S_2 \perp \cdots \perp S_k) \neq \emptyset$, every hyperplane which separates S_1 and $S_2 \perp \cdots \perp S_k$ must contain R and so does not separate V_1 and V_2 . Hence T_1 and T_2 cannot be separated by a hyperplane. This yields relint $T_1 \cap$ relint $T_2 \neq \emptyset$. On the other hand, we have $z \in T_1 \cap T_2$ and $z \notin$ relint $T_1 \cup$ relint T_2 . Thus $T_1 \cap T_2$ contains at least two points, contrary to hypothesis.

We deduce that V is the vertex set of an r-dimensional simplex S_{k+1} which intersects R in a single point $y \in \text{relint } S_{k+1}$. Assume that $y \neq z$. Then, without loss of generality, $y \notin \text{aff } S_1$, and with reasoning similar to that used above we find that $\text{conv}(S_1 \cup \{y\})$ and $S_2 \perp \cdots \perp S_k$ have at least two points in common. As the same is true of $\text{conv}(S_1 \cup S_{k+1})$ and $S_2 \perp \cdots \perp S_k$, the hypothesis $P \in \mathscr{P}$ is contradicted. Hence y = z, and consequently $P = S_1 \perp \cdots \perp S_k \perp S_{k+1}$. This completes the proof of the theorem.

3. Remarks

1) Since positive sets are convex, the theorem implies the characterization of strongly positively independent sets proved by Hansen and Klee [4] and earlier by McKinney [5]. A set $X \subset \mathbb{R}^d \setminus \{o\}$ is called *strongly positively independent* provided that $pos X_1 \cap pos X_2 \subset \{o\}$ whenever X_1 and X_2 are disjoint subsets of X. Here o is the origin of \mathbb{R}^d and pos X denotes the positive hull of X. It turns out that, in our notation, X is strongly positively independent if and only if X = vert P for some polytope $P \in \mathcal{P}$ whose center coincides with o. Although our theorem and the Hansen-Klee result are closely related we have been unable to derive the former from the latter. As for the corollary to the theorem, we remark that it implies the well-known intersection theorems for positive sets due to Steinitz and Robinson; see [4].

2) Let $P \in \mathcal{P}$ be a polytope in \mathbb{R}^d as described in the theorem. Following Hansen and Klee [4] we define the *invariant* of P to be the sequence $(r; d_1, \dots, d_k)$, where d_1, \dots, d_k are the dimensions of S_1, \dots, S_k arranged in increasing order and with proper multiplicity. Two *d*-polytopes $P_1, P_2 \in \mathcal{P}$ with centers z_1, z_2 have the same invariant if and only if there exists a non-singular projective transformation Γ of \mathbb{R}^d such that $\Gamma P_1 = P_2$ and $\Gamma z_1 = z_2$. The number of equivalence classes under the corresponding equivalence relation is

$$p(1)+\cdots+p(d)-d+1,$$

where p(n) denotes the number of partitions of n.

3) Let \mathscr{P}_s denote the class of *simplicial* polytopes in \mathscr{P} corresponding to the case r = 0 of the theorem. The class \mathscr{P}_s is dual to the class of direct linear sums of simplices investigated by Gruber [1], [2], Schneider [8] and, more recently, by McMullen, Schneider and Shephard [6]. To be precise, let $P \in \mathscr{P}_s$ be a d-polytope in \mathbb{R}^d with center o and let P^* be the polar set of P; see [3, p. 47]. Then P^* is a direct linear sum of simplices, P is dual to P^* and the correspondence between P and P^* is one-to-one. The number of equivalence classes of d-polytopes in \mathscr{P}_s is p(d).

4) A Radon partition of a finite set $X \,\subset R^d$ is a pair $\{X_1, X_2\}$ of subsets of X such that $X_1 \cap X_2 = \emptyset, X_1 \cup X_2 = X$ and $\operatorname{conv} X_1 \cap \operatorname{conv} X_2 \neq \emptyset$. Extending the definition of the class \mathcal{P} we write $X \in \mathcal{P}$ provided that $\operatorname{conv} X_1 \cap \operatorname{conv} X_2$ is a single point whenever $\{X_1, X_2\}$ is a Radon partition of X. The theorem implies that $X \in \mathcal{P}$ if and only if, for some polytope $P \in \mathcal{P}$ with center z, either $X = \operatorname{vert} P$ or $X = \operatorname{vert} P \cup \{z\}$. If only sets which affinely span R^d are considered, then the number of equivalence classes in the sense defined above is

J. ECKHOFF

$$2p(1)+\cdots+2p(d)-d+1.$$

5) The corollary to the theorem supplements the results of Reay [7] on (r, k)-divisible sets. A set $X \subset \mathbb{R}^d$ is said to be (r, k)-divisible if it can be partitioned into r pairwise disjoint subsets whose convex hulls intersect in a set of dimension at least k. The corollary shows that if card X > 2d + 1 then X is (2, 1)-divisible. Since a cross set in \mathbb{R}^d is not (2, 1)-divisible, the result is best possible. It would be interesting to prove an analogous theorem for (r, 1)-divisible sets.

REFERENCES

1. P. Gruber, Zur Charakterisierung konvexer Körper. Über einen Satz von Rogers und Shephard. II, Math. Ann. 184 (1970), 79-105.

2. P. Gruber, Über die Durchschnitte von translationsgleichen Polyedern, Monatsh. Math. 74 (1970), 223-238.

3. B. Grünbaum, Convex Polytopes, New York, 1967.

4. W. Hansen and V. Klee, Intersection theorems for positive sets, Proc. Amer. Math. Soc. 22 (1969), 450-457.

5. R. L. McKinney, *Positive bases for linear spaces*, Trans. Amer. Math. Soc. 103 (1962), 131-148.

6. P. McMullen, R. Schneider and G. C. Shephard, Monotypic polytopes and their intersection properties, Geometriae Dedicata 3 (1974), 99-129.

7. J. R. Reay, An extension of Radon's theorem, Illinois J. Math. 12 (1968), 184-189.

8. R. Schneider, Characterization of certain polytopes by intersection properties of their translates, Mathematika 16 (1969), 276–282.

Universität Dortmund Dortmund, Germany