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ON A CLASS OF CONVEX POLYTOPES 

BY 

JORGEN ECKHOFF 

ABSTRACT 

Let ~ denote the class of convex polytopes P having the following property: If 
O~ and O~ are any subpolytopes of P with no vertex in common, then O, n Oz 
is either empty or a single point. A characterization of ~ is given which implies 
the characterization of strongly positively independent sets due to McKinney, 
Hansen and Klee. 

I. Introduction 

The purpose of this note is to prove a theorem on a class of convex polytopes 

which is analogous to the characterization of strongly positively independent sets 

given by McKinney [5] and Hansen and Klee [4]. 

Throughout  P will denote  a polytope, that is, a convex polytope in some 

d-dimensional  affine space R d. If P is d-dimensional,  it will be called a 

d-polytope.  For general information about polytopes we refer to Gr/.inbaum [3]. 

The standard abbreviations conv, aft, relint, dim, card will be used for convex 

hull, affine hull, relative interior, dimension, cardinality. The vertex set of P will 

be denoted by vert P. 

A polytope O is called a subpolytope of P if vert O Cvert  P. We write ~ for 

the class of polytopes P with the following property:  If O~ and 02 are 

subpolytopes of P such that vert O~ N vert O2 = Q, then O~ O 02 is either empty  

or a single point. We shall give a simple geometrical description of the class ~. 

Clearly, if P E ~ and O is a subpolytope of P, then O E o~. Every simplex 

belongs to ~, and so does every d-polytope with d + 2  vertices, as can be 

deduced from the well-known structure of such polytopes. See [3, p. 98]. 

In order to formulate our result we introduce the concept of a cross of 

polytopes. By this we mean the following. Let P, O , , "  ", Ok be polytopes 

such that P = c o n v ( O l U . . . U O k ) ,  d i m P = d i m O ~ + . . . + d i m O k ,  and 
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rel intQt n - . .  Nrel intQk is a single point. Then P is called the cross of 

Q t , " ' ,  0~, and we write 

P =  Q 1 ± " ' ± Q k .  

Our theorem is as follows. 

THEOREM. Let  P be a polytope in R ~. Then  P ~ ~ if and only if, for some r >- 0 

and simplices S~,. •., Sk in R d, p is an r-fold pyramid with basis S~ 1 • • • ± SE. 

For the definition of an r-fold pyramid, see [3, p. 55]. 

Let P E ~ be a polytope in R n as described in the theorem. We define the 

center z of P to be the point relint St N • • • n relint Sk, if k > 1, and an arbitrary 

point of relintP, if k = 1. The theorem implies that if O~ and Q2 are any 

subpolytopes of P satisfying vert O~ n vert 02 = 0 ,  then Q1 n 02 c{ z }. 

Another  consequence of the theorem is that no d-polytope P ~ ~ can have 

more than 2d vertices. If the number of vertices is exactly 2d, then P is a cross of 

d segments, that is, P is projectively equivalent to the regular d-crosspolytope. 

By a cross set in R n we understand the vertex set of a cross of d segments 

together with its center. 

The following is an easy deduction from the theorem. 

COROLLARY. Let X be a set in R n. I f  card X > 2d + 1, then X contains two 

disjoint subsets whose convex hulls have at least two points in common.  The same 

is true when card X = 2d + 1 unless X is a cross set in R d. 

2. Proof of the theorem 

Before proceeding with the proof we recall that two sets X~, Xz C R d are said 

to be separated by a hyperplane H if they lie one in each of the two closed 

half-spaces bounded by H. If X~ and X2 are convex and aft (X~ U X2) = R d, then 

X~ and X2 may be separated by a hyperplane if and only if relint X~ n relint X2 = 

Q. See [3, p. 11]. 

The "if"  part of the theorem is easily verified. For the "only if" part we use 

induction on d and the number of vertices of P. Let P E ~ denote a d-polytope 

in R d. We assume that P is not a simplex because otherwise there is nothing to 

prove. Moreover,  since a pyramid belongs to ~ if and only if its basis does, we 

may also assume that P is non-pyramidal. It is to be shown that P is a cross of at 

least two simplices. 
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Let us choose any vertex v E vert P and let Q denote the subpolytope of P 

spanned by vert P \ {v} .  Then Q E ~ and dim Q = d. The inductive hypothesis 

implies that O is either a pyramid or a cross of at least two simplices. 

The second case cannot arise. Indeed, assume that Q = S~ _L • .. ± &, where 

k > l ,  and let z be the center of Q. Since v / z  we have, without loss of 

generality, v~a f fS~ .  Let T , = c o n v ( S ~ U { v } )  and T 2 = S 2 - L ' " - L S k .  Then 

vert T, N vert T2 = 0 .  Since aft Q = R u and relint S, fq relint T2 / O it follows 

that Sz and T2 cannot be separated by a hyperplane. The same is true for T~ and 

T2, whence relint T, t3 relint T2 ~ O. But T, is a pyramid with basis S~. Therefore  

z ~ relint T,. We deduce that T, and '/'2 intersect in at least two points, contrary 

to the hypothesis P E ~. 

Hence Q is a pyramid. We first observe that if Q is a simplex, then P is a 

simplicial d-polytope with d + 2 vertices, and therefore P is a cross of two 

simplices. See [3, p. 98]. 

It remains to consider the case in which Q is an r-fold pyramid with basis 

S, ± • • • ± & for some r _-> 1 and k -> 2. Let z be the center of Q and let vl, • • ", v, 

denote the apexes of the r pyramids which make up Q. Further, let V =  

{v,v,,. . . ,v,} and R = aff(S~_L..._t_&). 

We claim that every open half-space bounded by a hyperplane through R 

contains points of V. In fact, assume that this were not true. Since P is 

non-pyramidal,  at most r - 1 points of V can lie on a hyperplane through R. In 

particular, V N  R = O .  Now R has codimension r and so there exists, by 

Radon 's  theorem [3, p. 16] in R ' - I ,  a partition of V into non-empty subsets V~ 

and V2 which cannot be separated by any hyperplane through R. Let T1 = 

cony(S,  U V~) and /'2 = conv( (S2± . . . _L  & ) U  V:). Then T~ and T2 are sub- 

polytopes of P with no vertex in common.  Since relintS~ tq 

relint ($2 _L • • • ± Sk ) ~ 0 ,  every hyperplane which separates S~ and $2 _1_ • • • ± Sk 

must contain R and so does not separate V~ and Vz. Hence T~ and T2 cannot be 

separated by a hyperplane. This yields relint T, fq relint T 2 / 0 .  On the other 

hand, we have z ~ T, A T2 and z ~ relint T, U relint T2. Thus T~ fq T2 contains at 

least two points, contrary to hypothesis. 

We deduce that V is the vertex set of an r-dimensional simplex Sk+1 which 

intersects R in a single point y E relint Sk÷,. Assume that y / z .  Then, without 

loss of generality, y ~ aft S,, and with reasoning similar to that used above we 

find that cony (S~ U { y }) and S: ± • • • ± & have at least two points in common.  

As the same is true of conv (S, U SE+~) and $2 ± • • • _L Sk, the hypothesis P E ~ is 

contradicted. Hence y = z, and consequently P = S~ ± • • • _L Sk ± &÷,. This 

completes the proof of the theorem. 
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3. Remarks 

1) Since positive sets are convex, the theorem implies the characterization of 

strongly positively independent sets proved by Hansen and Klee [4] and earlier 

by McKinney [5]. A set X C R d/{o } is called strongly positively independent 
provided that pos X, N pos X2 C { o } whenever X, and X 2 are disjoint subsets of 

X. Here o is the origin of R d and pos X denotes the positive hull of X. It turns 

out that, in our notation, X is strongly positively independent if and only if 

X = vert P for some polytope P E ~ whose center coincides with o. Although 

our theorem and the Hansen-Klee result are closely related we have been unable 

to derive the former from the latter. As for the corollary to the theorem, we 

remark that it implies the well-known intersection theorems for positive sets due 

to Steinitz and Robinson; see [4]. 

2) Let P E 3 ~ be a polytope in R ~ as described in the theorem. Following 

Hansen and Klee [4] we define the invariant of P to be the sequence 

(r ;d , . . . ,dk) ,  where d , . . . , dk  are the dimensions of S~, . . . ,Sk arranged in 

increasing order and with proper multiplicity. Two d-polytopes P~, P2 ~ ~ with 

centers zj, z2 have the same invariant if and only if there exists a non-singular 

projective transformation F of R d such that FP~ = P2 and Fzl = z2. The number 

of equivalence classes under the corresponding equivalence relation is 

p0)+ . . .+p(d) -d+l ,  

where p(n) denotes the number of partitions of n. 

3) Let ~ denote the class of simplicial polytopes in 3 ~ corresponding to the 

case r = 0 of the theorem. The class 3~ is dual to the class of direct linear sums of 

simplices investigated by Gruber  [1], [2], Schneider [8] and, more recently, by 

McMullen, Schneider and Shephard [6]. To be precise, let P E  ~ be a 

d-polytope in R d with center o and let P* be the polar set of P;  see [3, p. 47]. 

Then P* is a direct linear sum of simplices, P is dual to P* and the 

correspondence between P and P* is one-to-one. The number of equivalence 

classes of d-polytopes in ~ is p(d). 
4) A Radon partition of a finite set X CR ~ is a pair {X~, X2} of subsets of X 

such that X~ A X2 = •, X~ U 9(2 = X and conv X~ A conv X2 ~ Q. Extending the 

definition of the class ~ we write X E 3 ~ provided that conv XI A conv X2 is a 

single point whenever { X~, X2} is a Radon partition of X. The theorem implies 

that X E  ~ if and only if, for some polytope P E  ~ with center z, either 

X = v e r t P  or X = v e r t P U / z } .  If only sets which affinely span R ~ are 

considered, then the number of equivalence classes in the sense defined above is 
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2p(1)+ . . .  + 2p (d ) -  d + 1. 

5) The corollary to the theorem supplements the results of Reay [7] on 

(r, k)-divisible sets. A set X C R ~ is said to be (r, k)-divisible if it can be 

partitioned into r pairwise disjoint subsets whose convex hulls intersect in a set 

of dimension at least k. The corollary shows that if card X > 2d + 1 then X is 

(2, 1)-divisible. Since a cross set in R ~ is not (2, 1)-divisible, the result is best 

possible. It would be interesting to prove an analogous theorem for (r, 1)- 

divisible sets. 
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