ON A CLASS OF CONVEX POLYTOPES

BY

JÜRGEN ECKHOFF

ABSTRACT

Let $\mathcal P$ denote the class of convex polytopes P having the following property: If Q_1 and Q_2 are any subpolytopes of P with no vertex in common, then $Q_1 \cap Q_2$ is either empty or a single point. A characterization of $\mathcal P$ is given which implies the characterization of strongly positively independent sets due to McKinney, Hansen and Klee.

I. Introduction

The purpose of this note is to prove a theorem on a class of convex polytopes which is analogous to the characterization of strongly positively independent sets given by McKinney [5] and Hansen and Klee [4].

Throughout P will denote a polytope, that is, a convex polytope in some d-dimensional affine space R^d . If P is d-dimensional, it will be called a d -polytope. For general information about polytopes we refer to Grünbaum $[3]$. The standard abbreviations conv, aft, relint, dim, card will be used for convex hull, affine hull, relative interior, dimension, cardinality. The vertex set of P will be denoted by vert P.

A polytope Q is called a *subpolytope* of P if vert $Q \subset \text{vert } P$. We write $\mathcal P$ for the class of polytopes P with the following property: If Q_1 and Q_2 are subpolytopes of P such that vert $Q_1 \cap$ vert $Q_2 = \emptyset$, then $Q_1 \cap Q_2$ is either empty or a single point. We shall give a simple geometrical description of the class \mathcal{P} . Clearly, if $P \in \mathcal{P}$ and Q is a subpolytope of P, then $Q \in \mathcal{P}$. Every simplex belongs to \mathcal{P} , and so does every d-polytope with $d + 2$ vertices, as can be deduced from the well-known structure of such polytopes. See [3, p. 98].

In order to formulate our result we introduce the concept of a *cross* of polytopes. By this we mean the following. Let P, Q_1, \dots, Q_k be polytopes such that $P = conv(Q_1 \cup \cdots \cup Q_k)$, dim $P = dim Q_1 + \cdots + dim Q_k$, and

Received June 30, 1975

relint $Q_1 \cap \cdots \cap$ relint Q_k is a single point. Then P is called the cross of Q_1, \dots, Q_k , and we write

$$
P=Q_1\perp\cdots\perp Q_k.
$$

Our theorem is as follows.

THEOREM. Let P be a polytope in R^d. Then $P \in \mathcal{P}$ if and only if, for some $r \ge 0$ and simplices S_1, \dots, S_k in R^d , P is an r-fold pyramid with basis $S_1 \perp \cdots \perp S_k$.

For the definition of an r-fold pyramid, see [3, p. 55].

Let $P \in \mathcal{P}$ be a polytope in R^d as described in the theorem. We define the *center z* of P to be the point relint $S_1 \cap \cdots \cap$ relint S_k , if $k > 1$, and an arbitrary point of relint P, if $k = 1$. The theorem implies that if Q_1 and Q_2 are any subpolytopes of P satisfying vert $Q_1 \cap$ vert $Q_2 = \emptyset$, then $Q_1 \cap Q_2 \subset \{z\}$.

Another consequence of the theorem is that no d-polytope $P \in \mathcal{P}$ can have more than 2d vertices. If the number of vertices is exactly 2d, then P is a cross of d segments, that is, P is projectively equivalent to the regular d -crosspolytope. By a *cross set* in R^d we understand the vertex set of a cross of d segments together with its center.

The following is an easy deduction from the theorem.

COROLLARY. Let X be a set in R^d . If card $X > 2d + 1$, then X contains two *disjoint subsets whose convex hulls have at least two points in common. The same is true when card* $X = 2d + 1$ *unless* X *is a cross set in* R^d .

2. Proof of the theorem

Before proceeding with the proof we recall that two sets $X_1, X_2 \subset \mathbb{R}^d$ are said to be *separated* by a hyperplane H if they lie one in each of the two closed half-spaces bounded by H. If X_1 and X_2 are convex and aff $(X_1 \cup X_2) = R^d$, then X_1 and X_2 may be separated by a hyperplane if and only if relint $X_1 \cap$ relint $X_2 =$ Q. See [3, p. 11].

The "if" part of the theorem is easily verified. For the "only if" part we use induction on d and the number of vertices of P. Let $P \in \mathcal{P}$ denote a d-polytope in R^d . We assume that P is not a simplex because otherwise there is nothing to prove. Moreover, since a pyramid belongs to $\mathcal P$ if and only if its basis does, we may also assume that P is non-pyramidal. It is to be shown that P is a cross of at least two simplices.

Let us choose any vertex $v \in$ vert P and let Q denote the subpolytope of P spanned by vert $P \setminus \{v\}$. Then $Q \in \mathcal{P}$ and dim $Q = d$. The inductive hypothesis implies that Q is either a pyramid or a cross of at least two simplices.

The second case cannot arise. Indeed, assume that $Q = S_1 \perp \cdots \perp S_k$, where $k>1$, and let z be the center of Q. Since $v \neq z$ we have, without loss of generality, $v \notin \text{aff } S_1$. Let $T_1 = \text{conv}(S_1 \cup \{v\})$ and $T_2 = S_2 \perp \cdots \perp S_k$. Then vert $T_1 \cap$ vert $T_2 = \emptyset$. Since aff $Q = R^d$ and relint $S_1 \cap$ relint $T_2 \neq \emptyset$ it follows that S_1 and T_2 cannot be separated by a hyperplane. The same is true for T_1 and T_2 , whence relint $T_1 \cap$ relint $T_2 \neq \emptyset$. But T_1 is a pyramid with basis S_1 . Therefore $z \notin$ relint T_1 . We deduce that T_1 and T_2 intersect in at least two points, contrary to the hypothesis $P \in \mathcal{P}$.

Hence Q is a pyramid. We first observe that if Q is a simplex, then P is a simplicial d-polytope with $d + 2$ vertices, and therefore P is a cross of two simplices. See [3, p. 98].

It remains to consider the case in which Q is an r-fold pyramid with basis $S_1 \perp \cdots \perp S_k$ for some $r \ge 1$ and $k \ge 2$. Let z be the center of Q and let v_1, \dots, v_r denote the apexes of the r pyramids which make up Q. Further, let $V=$ $\{v, v_1, \dots, v_r\}$ and $R = \text{aff}(S_1 \perp \dots \perp S_k).$

We claim that every open half-space bounded by a hyperplane through R contains points of V . In fact, assume that this were not true. Since P is non-pyramidal, at most $r - 1$ points of V can lie on a hyperplane through R. In particular, $V \cap R = \emptyset$. Now R has codimension r and so there exists, by Radon's theorem [3, p. 16] in R^{-1} , a partition of V into non-empty subsets V_1 and V_2 which cannot be separated by any hyperplane through R. Let $T_1 =$ conv $(S_1 \cup V_1)$ and $T_2 = \text{conv}((S_2 \perp \cdots \perp S_k) \cup V_2)$. Then T_1 and T_2 are subpolytopes of P with no vertex in common. Since relint $S_1 \cap$ relint $(S_2 \perp \cdots \perp S_k) \neq \emptyset$, every hyperplane which separates S_1 and $S_2 \perp \cdots \perp S_k$ must contain R and so does not separate V_1 and V_2 . Hence T_1 and T_2 cannot be separated by a hyperplane. This yields relint $T_1 \cap$ relint $T_2 \neq \emptyset$. On the other hand, we have $z \in T_1 \cap T_2$ and $z \notin$ relint $T_1 \cup$ relint T_2 . Thus $T_1 \cap T_2$ contains at least two points, contrary to hypothesis.

We deduce that V is the vertex set of an r-dimensional simplex S_{k+1} which intersects R in a single point $y \in$ relint S_{k+1} . Assume that $y \neq z$. Then, without loss of generality, $y \notin \text{aff } S_1$, and with reasoning similar to that used above we find that conv $(S_1 \cup \{y\})$ and $S_2 \perp \cdots \perp S_k$ have at least two points in common. As the same is true of conv $(S_1 \cup S_{k+1})$ and $S_2 \perp \cdots \perp S_k$, the hypothesis $P \in \mathcal{P}$ is contradicted. Hence $y = z$, and consequently $P = S_1 \perp \cdots \perp S_k \perp S_{k+1}$. This completes the proof of the theorem.

3. Remarks

1) Since positive sets are convex, the theorem implies the characterization of strongly positively independent sets proved by Hansen and Klee [4] and earlier by McKinney [5]. A set $X \subset \mathbb{R}^d \setminus \{o\}$ is called *strongly positively independent* provided that pos $X_1 \cap$ pos $X_2 \subset \{o\}$ whenever X_1 and X_2 are disjoint subsets of X. Here o is the origin of R^d and pos X denotes the positive hull of X. It turns out that, in our notation, X is strongly positively independent if and only if $X =$ vert P for some polytope $P \in \mathcal{P}$ whose center coincides with ρ . Although our theorem and the Hansen-Klee result are closely related we have been unable to derive the former from the latter. As for the corollary to the theorem, we remark that it implies the well-known intersection theorems for positive sets due to Steinitz and Robinson; see [4].

2) Let $P \in \mathcal{P}$ be a polytope in R^d as described in the theorem. Following Hansen and Klee [4] we define the *invariant* of P to be the sequence $(r; d_1, \dots, d_k)$, where d_1, \dots, d_k are the dimensions of S_1, \dots, S_k arranged in increasing order and with proper multiplicity. Two d-polytopes $P_1, P_2 \in \mathcal{P}$ with centers z_1 , z_2 have the same invariant if and only if there exists a non-singular projective transformation Γ of R^d such that $\Gamma P_1 = P_2$ and $\Gamma z_1 = z_2$. The number of equivalence classes under the corresponding equivalence relation is

$$
p(1)+\cdots+p(d)-d+1,
$$

where $p(n)$ denotes the number of partitions of *n*.

3) Let \mathcal{P}_s denote the class of *simplicial* polytopes in $\mathcal P$ corresponding to the case $r = 0$ of the theorem. The class \mathcal{P}_s is dual to the class of direct linear sums of simplices investigated by Gruber [1], [2], Schneider [8] and, more recently, by McMullen, Schneider and Shephard [6]. To be precise, let $P \in \mathcal{P}_s$ be a d-polytope in R^d with center o and let P^* be the polar set of P; see [3, p. 47]. Then P^* is a direct linear sum of simplices, P is dual to P^* and the correspondence between P and P^* is one-to-one. The number of equivalence classes of *d*-polytopes in \mathcal{P}_s is $p(d)$.

4) *A Radon partition* of a finite set $X \subset \mathbb{R}^d$ is a pair $\{X_1, X_2\}$ of subsets of X such that $X_1 \cap X_2 = \emptyset$, $X_1 \cup X_2 = X$ and conv $X_1 \cap \text{conv } X_2 \neq \emptyset$. Extending the definition of the class $\mathcal P$ we write $X \in \mathcal P$ provided that conv $X_1 \cap \text{conv } X_2$ is a single point whenever $\{X_1, X_2\}$ is a Radon partition of X. The theorem implies that $X \in \mathcal{P}$ if and only if, for some polytope $P \in \mathcal{P}$ with center z, either $X = \text{vert } P$ or $X = \text{vert } P \cup \{z\}$. If only sets which affinely span R^d are considered, then the number of equivalence classes in the sense defined above is

336 J. ECKHOFF Israel J. Math.

$$
2p(1)+\cdots+2p(d)-d+1.
$$

5) The corollary to the theorem supplements the results of Reay [7] on (r, k) -divisible sets. A set $X \subseteq R^d$ is said to be (r, k) -divisible if it can be **partitioned into r pairwise disjoint subsets whose convex hulls intersect in a set** of dimension at least k. The corollary shows that if card $X > 2d + 1$ then X is $(2, 1)$ -divisible. Since a cross set in R^d is not $(2, 1)$ -divisible, the result is best possible. It would be interesting to prove an analogous theorem for $(r, 1)$ **divisible sets.**

REFERENCES

1. P. Gruber, *Zur Charakterisierung konvexer K6rper. Ober einen Satz yon Rogers und Shephard.* II, Math. Ann. 184 (1970), 79-105.

2. P. Gruber, *Uber die Durchschnitte yon translationsgleichen Polyedern,* Monatsh. Math. 74 (1970), 223-238.

3. B. Griinbattm, *Convex Polytopes,* New York, 1967.

4. W. Hansen and V. Klee, *Intersection theorems for positive sets,* Proc. Amer. Math. Soc. 22 (1969), 450-457.

5. R. L. McKinney, *Positive bases for linear spaces,* Trans. Amer. Math. Soc. 103 (1962), 131-148.

6. P. McMullen, R. Schneider and G. C. Shephard, *Monotypic polytopes and their intersection properties,* Geometriae Dedicata 3 (1974), 99-129.

7. J. R. Reay, *An extension of Radon's theorem,* Illinois J. Math. 12 (1968), 184-189.

8. R. Schneider, *Characterization of certain polytopes by intersection properties of their translates,* Mathematika 16 (1969), 276-282.

UNIVERSITAT DORTMUND DORTMUND, GERMANY